芝麻web文件管理V1.00
编辑当前文件:/home2/sdektunc/www/cepali/analytics/classes/local/target/discrete.php
. /** * Discrete values target. * * @package core_analytics * @copyright 2017 David Monllao {@link http://www.davidmonllao.com} * @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later */ namespace core_analytics\local\target; defined('MOODLE_INTERNAL') || die(); /** * Discrete values target. * * @package core_analytics * @copyright 2017 David Monllao {@link http://www.davidmonllao.com} * @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later */ abstract class discrete extends base { /** * Are this target calculations linear values? * * @return bool */ public function is_linear() { // Not supported yet. throw new \coding_exception('Sorry, this version\'s prediction processors only support targets with binary values.' . ' You can write your own and overwrite this method though.'); } /** * Is the provided class one of this target valid classes? * * @param mixed $class * @return bool */ protected static function is_a_class($class) { return (in_array($class, static::get_classes(), false)); } /** * get_display_value * * @param float $value * @param string $ignoredsubtype * @return string */ public function get_display_value($value, $ignoredsubtype = false) { if (!self::is_a_class($value)) { throw new \moodle_exception('errorpredictionformat', 'analytics'); } // To discard any possible weird keys devs used. $classes = array_values(static::get_classes()); $descriptions = array_values(static::classes_description()); if (count($classes) !== count($descriptions)) { throw new \coding_exception('You need to describe all your classes (' . json_encode($classes) . ') in self::classes_description'); } $key = array_search($value, $classes); if ($key === false) { throw new \coding_exception('You need to describe all your classes (' . json_encode($classes) . ') in self::classes_description'); } return $descriptions[$key]; } /** * get_calculation_outcome * * @param float $value * @param string $ignoredsubtype * @return int */ public function get_calculation_outcome($value, $ignoredsubtype = false) { if (!self::is_a_class($value)) { throw new \moodle_exception('errorpredictionformat', 'analytics'); } if (in_array($value, $this->ignored_predicted_classes(), false)) { // Just in case, if it is ignored the prediction should not even be recorded. return self::OUTCOME_OK; } debugging('Please overwrite \core_analytics\local\target\discrete::get_calculation_outcome, all your target ' . 'classes are styled the same way otherwise', DEBUG_DEVELOPER); return self::OUTCOME_OK; } /** * Returns all the possible values the target calculation can return. * * Only useful for targets using discrete values, must be overwriten if it is the case. * * @return array */ public static function get_classes() { // Coding exception as this will only be called if this target have non-linear values. throw new \coding_exception('Overwrite get_classes() and return an array with the different values the ' . 'target calculation can return'); } /** * Returns descriptions for each of the values the target calculation can return. * * The array indexes should match self::get_classes indexes. * * @return array */ protected static function classes_description() { throw new \coding_exception('Overwrite classes_description() and return an array with a description for each of the ' . 'different values the target calculation can return. Indexes should match self::get_classes indexes'); } /** * Returns the predicted classes that will be ignored. * * Better be keen to add more than less classes here, the callback is always able to discard some classes. As an example * a target with classes 'grade 0-3', 'grade 3-6', 'grade 6-8' and 'grade 8-10' is interested in flagging both 'grade 6-8' * and 'grade 8-10' as ignored. On the other hand, a target like dropout risk with classes 'yes', 'no' may just be * interested in 'yes'. * * @return array List of values that will be ignored (array keys are ignored). */ public function ignored_predicted_classes() { // Coding exception as this will only be called if this target have non-linear values. throw new \coding_exception('Overwrite ignored_predicted_classes() and return an array with the classes that should not ' . 'trigger the callback'); } /** * This method determines if a prediction is interesing for the model or not. * * This method internally calls ignored_predicted_classes to skip classes * flagged by the target as not important for users. * * @param mixed $predictedvalue * @param float $predictionscore * @return bool */ public function triggers_callback($predictedvalue, $predictionscore) { if (!parent::triggers_callback($predictedvalue, $predictionscore)) { return false; } if (in_array($predictedvalue, $this->ignored_predicted_classes())) { return false; } return true; } }