芝麻web文件管理V1.00
编辑当前文件:/home2/sdektunc/www/cepali/analytics/classes/local/time_splitting/base.php
. /** * Base time splitting method. * * @package core_analytics * @copyright 2016 David Monllao {@link http://www.davidmonllao.com} * @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later */ namespace core_analytics\local\time_splitting; defined('MOODLE_INTERNAL') || die(); /** * Base time splitting method. * * @package core_analytics * @copyright 2016 David Monllao {@link http://www.davidmonllao.com} * @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later */ abstract class base { /** * @var string */ protected $id; /** * The model id. * * @var int */ protected $modelid; /** * @var \core_analytics\analysable */ protected $analysable; /** * @var array */ protected $ranges = []; /** * Define the time splitting methods ranges. * * 'time' value defines when predictions are executed, their values will be compared with * the current time in ready_to_predict. The ranges should be sorted by 'time' in * ascending order. * * @return array('start' => time(), 'end' => time(), 'time' => time()) */ abstract protected function define_ranges(); /** * Returns a lang_string object representing the name for the time splitting method. * * Used as column identificator. * * If there is a corresponding '_help' string this will be shown as well. * * @return \lang_string */ public static abstract function get_name() : \lang_string; /** * Returns the time splitting method id. * * @return string */ public function get_id() { return '\\' . get_class($this); } /** * Assigns the analysable and updates the time ranges according to the analysable start and end dates. * * @param \core_analytics\analysable $analysable * @return void */ public function set_analysable(\core_analytics\analysable $analysable) { $this->analysable = $analysable; $this->ranges = $this->define_ranges(); $this->validate_ranges(); } /** * Assigns the model id to this time-splitting method it case it needs it. * * @param int $modelid */ public function set_modelid(int $modelid) { $this->modelid = $modelid; } /** * get_analysable * * @return \core_analytics\analysable */ public function get_analysable() { return $this->analysable; } /** * Returns whether the course can be processed by this time splitting method or not. * * @param \core_analytics\analysable $analysable * @return bool */ public function is_valid_analysable(\core_analytics\analysable $analysable) { return true; } /** * Should we predict this time range now? * * @param array $range * @return bool */ public function ready_to_predict($range) { if ($range['time'] <= time()) { return true; } return false; } /** * Should we use this time range for training? * * @param array $range * @return bool */ public function ready_to_train($range) { $now = time(); if ($range['time'] <= $now && $range['end'] <= $now) { return true; } return false; } /** * Returns the ranges used by this time splitting method. * * @return array */ public function get_all_ranges() { return $this->ranges; } /** * By default all ranges are for training. * * @return array */ public function get_training_ranges() { return $this->ranges; } /** * Returns the distinct range indexes in this time splitting method. * * @return int[] */ public function get_distinct_ranges() { if ($this->include_range_info_in_training_data()) { return array_keys($this->ranges); } else { return [0]; } } /** * Returns the most recent range that can be used to predict. * * This method is only called when calculating predictions. * * @return array */ public function get_most_recent_prediction_range() { $ranges = $this->get_all_ranges(); // Opposite order as we are interested in the last range that can be used for prediction. krsort($ranges); // We already provided the analysable to the time splitting method, there is no need to feed it back. foreach ($ranges as $rangeindex => $range) { if ($this->ready_to_predict($range)) { // We need to maintain the same indexes. return array($rangeindex => $range); } } return array(); } /** * Returns range data by its index. * * @param int $rangeindex * @return array|false Range data or false if the index is not part of the existing ranges. */ public function get_range_by_index($rangeindex) { if (!isset($this->ranges[$rangeindex])) { return false; } return $this->ranges[$rangeindex]; } /** * Generates a unique sample id (sample in a range index). * * @param int $sampleid * @param int $rangeindex * @return string */ public final function append_rangeindex($sampleid, $rangeindex) { return $sampleid . '-' . $rangeindex; } /** * Returns the sample id and the range index from a uniquesampleid. * * @param string $uniquesampleid * @return array array($sampleid, $rangeindex) */ public final function infer_sample_info($uniquesampleid) { return explode('-', $uniquesampleid); } /** * Whether to include the range index in the training data or not. * * By default, we consider that the different time ranges included in a time splitting method may not be * compatible between them (i.e. the indicators calculated at the end of the course can easily * differ from indicators calculated at the beginning of the course). So we include the range index as * one of the variables that the machine learning backend uses to generate predictions. * * If the indicators calculated using the different time ranges available in this time splitting method * are comparable you can overwrite this method to return false. * * Note that: * - This is only relevant for models whose predictions are not based on assumptions * (i.e. the ones using a machine learning backend to generate predictions). * - The ranges can only be included in the training data when * we know the final number of ranges the time splitting method will have. E.g. * We can not know the final number of ranges of a 'daily' time splitting method * as we will have one new range every day. * @return bool */ public function include_range_info_in_training_data() { return true; } /** * Whether to cache or not the indicator calculations. * * Indicator calculations are stored to be reused across models. The calculations * are indexed by the calculation start and end time, and these times depend on the * time-splitting method. You should overwrite this method and return false if the time * frames generated by your time-splitting method are unique and / or can hardly be * reused by further models. * * @return bool */ public function cache_indicator_calculations(): bool { return true; } /** * Is this method valid to evaluate prediction models? * * @return bool */ public function valid_for_evaluation(): bool { return true; } /** * Validates the time splitting method ranges. * * @throws \coding_exception * @return void */ protected function validate_ranges() { foreach ($this->ranges as $key => $range) { if (!isset($this->ranges[$key]['start']) || !isset($this->ranges[$key]['end']) || !isset($this->ranges[$key]['time'])) { throw new \coding_exception($this->get_id() . ' time splitting method "' . $key . '" range is not fully defined. We need a start timestamp and an end timestamp.'); } } } }