芝麻web文件管理V1.00
编辑当前文件:/home2/sdektunc/public_html/cepali/lib/mlbackend/php/classes/processor.php
. /** * Php predictions processor * * @package mlbackend_php * @copyright 2016 David Monllao {@link http://www.davidmonllao.com} * @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later */ namespace mlbackend_php; defined('MOODLE_INTERNAL') || die(); use Phpml\Preprocessing\Normalizer; use Phpml\CrossValidation\RandomSplit; use Phpml\Dataset\ArrayDataset; use Phpml\ModelManager; /** * PHP predictions processor. * * @package mlbackend_php * @copyright 2016 David Monllao {@link http://www.davidmonllao.com} * @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later */ class processor implements \core_analytics\classifier, \core_analytics\regressor, \core_analytics\packable { /** * Size of training / prediction batches. */ const BATCH_SIZE = 5000; /** * Number of train iterations. */ const TRAIN_ITERATIONS = 500; /** * File name of the serialised model. */ const MODEL_FILENAME = 'model.ser'; /** * @var bool */ protected $limitedsize = false; /** * Checks if the processor is ready to use. * * @return bool */ public function is_ready() { if (version_compare(phpversion(), '7.0.0') < 0) { return get_string('errorphp7required', 'mlbackend_php'); } return true; } /** * Delete the stored models. * * @param string $uniqueid * @param string $modelversionoutputdir * @return null */ public function clear_model($uniqueid, $modelversionoutputdir) { remove_dir($modelversionoutputdir); } /** * Delete the output directory. * * @param string $modeloutputdir * @return null */ public function delete_output_dir($modeloutputdir) { remove_dir($modeloutputdir); } /** * Train this processor classification model using the provided supervised learning dataset. * * @param string $uniqueid * @param \stored_file $dataset * @param string $outputdir * @return \stdClass */ public function train_classification($uniqueid, \stored_file $dataset, $outputdir) { $modelfilepath = $this->get_model_filepath($outputdir); $modelmanager = new ModelManager(); if (file_exists($modelfilepath)) { $classifier = $modelmanager->restoreFromFile($modelfilepath); } else { $classifier = new \Phpml\Classification\Linear\LogisticRegression(self::TRAIN_ITERATIONS, Normalizer::NORM_L2); } $fh = $dataset->get_content_file_handle(); // The first lines are var names and the second one values. $metadata = $this->extract_metadata($fh); // Skip headers. fgets($fh); $samples = array(); $targets = array(); while (($data = fgetcsv($fh)) !== false) { $sampledata = array_map('floatval', $data); $samples[] = array_slice($sampledata, 0, $metadata['nfeatures']); $targets[] = intval($data[$metadata['nfeatures']]); $nsamples = count($samples); if ($nsamples === self::BATCH_SIZE) { // Training it batches to avoid running out of memory. $classifier->partialTrain($samples, $targets, array(0, 1)); $samples = array(); $targets = array(); } if (empty($morethan1sample) && $nsamples > 1) { $morethan1sample = true; } } fclose($fh); if (empty($morethan1sample)) { $resultobj = new \stdClass(); $resultobj->status = \core_analytics\model::NO_DATASET; $resultobj->info = array(); return $resultobj; } // Train the remaining samples. if ($samples) { $classifier->partialTrain($samples, $targets, array(0, 1)); } $resultobj = new \stdClass(); $resultobj->status = \core_analytics\model::OK; $resultobj->info = array(); // Store the trained model. $modelmanager->saveToFile($classifier, $modelfilepath); return $resultobj; } /** * Classifies the provided dataset samples. * * @param string $uniqueid * @param \stored_file $dataset * @param string $outputdir * @return \stdClass */ public function classify($uniqueid, \stored_file $dataset, $outputdir) { $classifier = $this->load_classifier($outputdir); $fh = $dataset->get_content_file_handle(); // The first lines are var names and the second one values. $metadata = $this->extract_metadata($fh); // Skip headers. fgets($fh); $sampleids = array(); $samples = array(); $predictions = array(); while (($data = fgetcsv($fh)) !== false) { $sampledata = array_map('floatval', $data); $sampleids[] = $data[0]; $samples[] = array_slice($sampledata, 1, $metadata['nfeatures']); if (count($samples) === self::BATCH_SIZE) { // Prediction it batches to avoid running out of memory. // Append predictions incrementally, we want $sampleids keys in sync with $predictions keys. $newpredictions = $classifier->predict($samples); foreach ($newpredictions as $prediction) { array_push($predictions, $prediction); } $samples = array(); } } fclose($fh); // Finish the remaining predictions. if ($samples) { $predictions = $predictions + $classifier->predict($samples); } $resultobj = new \stdClass(); $resultobj->status = \core_analytics\model::OK; $resultobj->info = array(); foreach ($predictions as $index => $prediction) { $resultobj->predictions[$index] = array($sampleids[$index], $prediction); } return $resultobj; } /** * Evaluates this processor classification model using the provided supervised learning dataset. * * During evaluation we need to shuffle the evaluation dataset samples to detect deviated results, * if the dataset is massive we can not load everything into memory. We know that 2GB is the * minimum memory limit we should have (\core_analytics\model::heavy_duty_mode), if we substract the memory * that we already consumed and the memory that Phpml algorithms will need we should still have at * least 500MB of memory, which should be enough to evaluate a model. In any case this is a robust * solution that will work for all sites but it should minimize memory limit problems. Site admins * can still set $CFG->mlbackend_php_no_evaluation_limits to true to skip this 500MB limit. * * @param string $uniqueid * @param float $maxdeviation * @param int $niterations * @param \stored_file $dataset * @param string $outputdir * @param string $trainedmodeldir * @return \stdClass */ public function evaluate_classification($uniqueid, $maxdeviation, $niterations, \stored_file $dataset, $outputdir, $trainedmodeldir) { $fh = $dataset->get_content_file_handle(); if ($trainedmodeldir) { // We overwrite the number of iterations as the results will always be the same. $niterations = 1; $classifier = $this->load_classifier($trainedmodeldir); } // The first lines are var names and the second one values. $metadata = $this->extract_metadata($fh); // Skip headers. fgets($fh); if (empty($CFG->mlbackend_php_no_evaluation_limits)) { $samplessize = 0; $limit = get_real_size('500MB'); // Just an approximation, will depend on PHP version, compile options... // Double size + zval struct (6 bytes + 8 bytes + 16 bytes) + array bucket (96 bytes) // https://nikic.github.io/2011/12/12/How-big-are-PHP-arrays-really-Hint-BIG.html. $floatsize = (PHP_INT_SIZE * 2) + 6 + 8 + 16 + 96; } $samples = array(); $targets = array(); while (($data = fgetcsv($fh)) !== false) { $sampledata = array_map('floatval', $data); $samples[] = array_slice($sampledata, 0, $metadata['nfeatures']); $targets[] = intval($data[$metadata['nfeatures']]); if (empty($CFG->mlbackend_php_no_evaluation_limits)) { // We allow admins to disable evaluation memory usage limits by modifying config.php. // We will have plenty of missing values in the dataset so it should be a conservative approximation. $samplessize = $samplessize + (count($sampledata) * $floatsize); // Stop fetching more samples. if ($samplessize >= $limit) { $this->limitedsize = true; break; } } } fclose($fh); // We need at least 2 samples belonging to each target. $counts = array_count_values($targets); $ntargets = count(explode(',', $metadata['targetclasses'])); foreach ($counts as $count) { if ($count < 2) { $notenoughdata = true; } } if ($ntargets > count($counts)) { $notenoughdata = true; } if (!empty($notenoughdata)) { $resultobj = new \stdClass(); $resultobj->status = \core_analytics\model::NOT_ENOUGH_DATA; $resultobj->score = 0; $resultobj->info = array(get_string('errornotenoughdata', 'mlbackend_php')); return $resultobj; } $phis = array(); // Evaluate the model multiple times to confirm the results are not significantly random due to a short amount of data. for ($i = 0; $i < $niterations; $i++) { if (!$trainedmodeldir) { $classifier = new \Phpml\Classification\Linear\LogisticRegression(self::TRAIN_ITERATIONS, Normalizer::NORM_L2); // Split up the dataset in classifier and testing. $data = new RandomSplit(new ArrayDataset($samples, $targets), 0.2); $classifier->train($data->getTrainSamples(), $data->getTrainLabels()); $predictedlabels = $classifier->predict($data->getTestSamples()); $phis[] = $this->get_phi($data->getTestLabels(), $predictedlabels); } else { $predictedlabels = $classifier->predict($samples); $phis[] = $this->get_phi($targets, $predictedlabels); } } // Let's fill the results changing the returned status code depending on the phi-related calculated metrics. return $this->get_evaluation_result_object($dataset, $phis, $maxdeviation); } /** * Returns the results objects from all evaluations. * * @param \stored_file $dataset * @param array $phis * @param float $maxdeviation * @return \stdClass */ protected function get_evaluation_result_object(\stored_file $dataset, $phis, $maxdeviation) { // Average phi of all evaluations as final score. if (count($phis) === 1) { $avgphi = reset($phis); } else { $avgphi = \Phpml\Math\Statistic\Mean::arithmetic($phis); } // Standard deviation should ideally be calculated against the area under the curve. if (count($phis) === 1) { $modeldev = 0; } else { $modeldev = \Phpml\Math\Statistic\StandardDeviation::population($phis); } // Let's fill the results object. $resultobj = new \stdClass(); // Zero is ok, now we add other bits if something is not right. $resultobj->status = \core_analytics\model::OK; $resultobj->info = array(); // Convert phi to a standard score (from -1 to 1 to a value between 0 and 1). $resultobj->score = ($avgphi + 1) / 2; // If each iteration results varied too much we need more data to confirm that this is a valid model. if ($modeldev > $maxdeviation) { $resultobj->status = $resultobj->status + \core_analytics\model::NOT_ENOUGH_DATA; $a = new \stdClass(); $a->deviation = $modeldev; $a->accepteddeviation = $maxdeviation; $resultobj->info[] = get_string('errornotenoughdatadev', 'mlbackend_php', $a); } if ($resultobj->score < \core_analytics\model::MIN_SCORE) { $resultobj->status = $resultobj->status + \core_analytics\model::LOW_SCORE; $a = new \stdClass(); $a->score = $resultobj->score; $a->minscore = \core_analytics\model::MIN_SCORE; $resultobj->info[] = get_string('errorlowscore', 'mlbackend_php', $a); } if ($this->limitedsize === true) { $resultobj->info[] = get_string('datasetsizelimited', 'mlbackend_php', display_size($dataset->get_filesize())); } return $resultobj; } /** * Loads the pre-trained classifier. * * @throws \moodle_exception * @param string $outputdir * @return \Phpml\Classification\Linear\LogisticRegression */ protected function load_classifier($outputdir) { $modelfilepath = $this->get_model_filepath($outputdir); if (!file_exists($modelfilepath)) { throw new \moodle_exception('errorcantloadmodel', 'mlbackend_php', '', $modelfilepath); } $modelmanager = new ModelManager(); return $modelmanager->restoreFromFile($modelfilepath); } /** * Train this processor regression model using the provided supervised learning dataset. * * @throws new \coding_exception * @param string $uniqueid * @param \stored_file $dataset * @param string $outputdir * @return \stdClass */ public function train_regression($uniqueid, \stored_file $dataset, $outputdir) { throw new \coding_exception('This predictor does not support regression yet.'); } /** * Estimates linear values for the provided dataset samples. * * @throws new \coding_exception * @param string $uniqueid * @param \stored_file $dataset * @param mixed $outputdir * @return void */ public function estimate($uniqueid, \stored_file $dataset, $outputdir) { throw new \coding_exception('This predictor does not support regression yet.'); } /** * Evaluates this processor regression model using the provided supervised learning dataset. * * @throws new \coding_exception * @param string $uniqueid * @param float $maxdeviation * @param int $niterations * @param \stored_file $dataset * @param string $outputdir * @param string $trainedmodeldir * @return \stdClass */ public function evaluate_regression($uniqueid, $maxdeviation, $niterations, \stored_file $dataset, $outputdir, $trainedmodeldir) { throw new \coding_exception('This predictor does not support regression yet.'); } /** * Exports the machine learning model. * * @throws \moodle_exception * @param string $uniqueid The model unique id * @param string $modeldir The directory that contains the trained model. * @return string The path to the directory that contains the exported model. */ public function export(string $uniqueid, string $modeldir) : string { $modelfilepath = $this->get_model_filepath($modeldir); if (!file_exists($modelfilepath)) { throw new \moodle_exception('errorexportmodelresult', 'analytics'); } // We can use the actual $modeldir as the directory is not modified during export, just copied into a zip. return $modeldir; } /** * Imports the provided machine learning model. * * @param string $uniqueid The model unique id * @param string $modeldir The directory that will contain the trained model. * @param string $importdir The directory that contains the files to import. * @return bool Success */ public function import(string $uniqueid, string $modeldir, string $importdir) : bool { $importmodelfilepath = $this->get_model_filepath($importdir); $modelfilepath = $this->get_model_filepath($modeldir); $modelmanager = new ModelManager(); // Copied from ModelManager::restoreFromFile to validate the serialised contents // before restoring them. $importconfig = file_get_contents($importmodelfilepath); // Clean stuff like function calls. $importconfig = preg_replace('/[^a-zA-Z0-9\{\}%\.\*\;\,\:\"\-\0\\\]/', '', $importconfig); $object = unserialize($importconfig, ['allowed_classes' => ['Phpml\\Classification\\Linear\\LogisticRegression']]); if (!$object) { return false; } if (get_class($object) == '__PHP_Incomplete_Class') { return false; } $classifier = $modelmanager->restoreFromFile($importmodelfilepath); // This would override any previous classifier. $modelmanager->saveToFile($classifier, $modelfilepath); return true; } /** * Returns the path to the serialised model file in the provided directory. * * @param string $modeldir The model directory * @return string The model file */ protected function get_model_filepath(string $modeldir) : string { // Output directory is already unique to the model. return $modeldir . DIRECTORY_SEPARATOR . self::MODEL_FILENAME; } /** * Returns the Phi correlation coefficient. * * @param array $testlabels * @param array $predictedlabels * @return float */ protected function get_phi($testlabels, $predictedlabels) { // Binary here only as well. $matrix = \Phpml\Metric\ConfusionMatrix::compute($testlabels, $predictedlabels, array(0, 1)); $tptn = $matrix[0][0] * $matrix[1][1]; $fpfn = $matrix[1][0] * $matrix[0][1]; $tpfp = $matrix[0][0] + $matrix[1][0]; $tpfn = $matrix[0][0] + $matrix[0][1]; $tnfp = $matrix[1][1] + $matrix[1][0]; $tnfn = $matrix[1][1] + $matrix[0][1]; if ($tpfp === 0 || $tpfn === 0 || $tnfp === 0 || $tnfn === 0) { $phi = 0; } else { $phi = ( $tptn - $fpfn ) / sqrt( $tpfp * $tpfn * $tnfp * $tnfn); } return $phi; } /** * Extracts metadata from the dataset file. * * The file poiter should be located at the top of the file. * * @param resource $fh * @return array */ protected function extract_metadata($fh) { $metadata = fgetcsv($fh); return array_combine($metadata, fgetcsv($fh)); } }