(f(x)) | (int f(x) dx) |
(e^x) | (e^x+c) | |
(cos(x)) | (sin(x)+c) | |
(sin(x)) | (-cos(x)+c) | |
(tan(x)) | (ln(sec(x))+c) | (-frac{pi}{2} < x < frac{pi}{2}) |
(sec x) | (ln (sec(x)+tan(x))+c) | ( -{piover 2}< x < {piover 2}) |
cosec(, x) | (ln ($cosec$(x)-cot(x))+c) | (0 < x < pi) |
cot(,x) | (ln(sin(x))+c) | (0< x< pi) |
(cosh(x)) | (sinh(x)+c) | |
(sinh(x)) | (cosh(x) + c) | |
(tanh(x)) | (ln(cosh(x))+c) | |
coth((x)) | (ln(sinh(x))+c ) | (x>0) |
({1over x^2+a^2}) | ({1over a}tan^{-1}{xover a}+c) | (a>0) |
({1over x^2-a^2}) | ({1over 2a}ln{x-aover x+a}+c) | (|x|>a>0) |
({1over a^2-x^2}) | ({1over 2a}ln{a+xover a-x}+c) | (|x| |
({1over sqrt{x^2+a^2}}) | (sinh^{-1}left(frac{x}{a}right) + c) | (a>0) |
({1over sqrt{x^2-a^2}}) | (cosh^{-1}left(frac{x}{a}right) + c) | (xgeq a > 0) |
({1over sqrt{x^2+k}}) | (ln (x+sqrt{x^2+k})+c) | |
({1over sqrt{a^2-x^2}}) | (sin^{-1}left(frac{x}{a}right)+c) | (-aleq xleq a) |
';
$string['calc_int_standard_integrals_name'] = 'Integrales Básicas';
$string['calc_product_rule_fact'] = 'La siguiente regla permite derivar funciones que se multiplican entre sí. Supongamos que se desea derivar (f(x)g(x)) respecto de (x).
[ frac{mathrm{d}}{mathrm{d}{x}} big(f(x)g(x)big) = f(x) cdot frac{mathrm{d} g(x)}{mathrm{d}{x}} + g(x)cdot frac{mathrm{d} f(x)}{mathrm{d}{x}},] o, usando una notación alterna, [ (f(x)g(x))\' = f\'(x)g(x)+f(x)g\'(x). ]';
$string['calc_product_rule_name'] = 'Regla del Producto';
$string['calc_quotient_rule_fact'] = 'La regla del cociente permite derivar dos funciones diferenciables (f(x)) y (g(x)),
[frac{d}{dx}left(frac{f(x)}{g(x)}right)=frac{g(x)cdotfrac{df(x)}{dx} - f(x)cdot frac{dg(x)}{dx}}{g(x)^2}. ]';
$string['calc_quotient_rule_name'] = 'Regla del Cociente';
$string['calc_rules_fact'] = '